Rho-dependent terminators and transcription termination.
نویسنده
چکیده
Rho-dependent transcription terminators participate in sophisticated genetic regulatory mechanisms, in both bacteria and phages; they occur in regulatory regions preceding the coding sequences of genes and within coding sequences, as well as at the end of transcriptional units, to prevent readthrough transcription. Most Rho-dependent terminators have been found in enteric bacteria, but they also occur in Gram-positive bacteria and may be widespread among bacteria. Rho-dependent termination requires both cis-acting elements, on the mRNA, and trans-acting factors. The only cis-acting element common to Rho-dependent terminators is richness in rC residues. Additional sequence elements have been observed at different Rho termination sites. These 'auxiliary elements' may assist in the termination process; they differ among terminators, their occurrence possibly depending on the function and sequence context of the terminator. Specific nucleotides required for termination have also been identified at Rho sites. Rho is the main factor required for termination; it is a ring-shaped hexameric protein with ATPase and helicase activities. NusG, NusA and NusB are additional factors participating in the termination process. Rho-dependent termination occurs by binding of Rho to ribosome-free mRNA, C-rich sites being good candidates for binding. Rho's ATPase is activated by Rho-mRNA binding, and provides the energy for Rho translocation along the mRNA; translocation requires sliding of the message into the central hole of the hexamer. When a polymerase pause site is encountered, the actual termination occurs, and the transcript is released by Rho's helicase activity. Many aspects of this process are still being studied. The isolation of mutants suppressing termination, site-directed mutagenesis of cis-acting elements in Rho-dependent termination, and biochemistry, are and will be contributing to unravelling the still undefined aspects of the Rho termination machinery. Analysis of the more sophisticated regulatory mechanisms relying on Rho-dependent termination may be crucial in identifying new essential elements for termination.
منابع مشابه
Rho and NusG suppress pervasive antisense transcription in Escherichia coli.
Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its cofactor, NusG, is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissocia...
متن کاملNusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator.
Rho-dependent transcription termination at certain terminators in Escherichia coli also depends on the presence of NusG [Sullivan, S. L. & Gottesman, M. E. (1992) Cell 68, 989-994]. We have found that termination at the first intragenic terminator in lacZ (tiZ1) is strongly dependent on NusG when transcription is done in vitro with the concentrations of NTPs found in vivo. With a lower level of...
متن کاملActivation of Rho-dependent transcription termination by NusG. Dependence on terminator location and acceleration of RNA release.
There is a kinetic limitation to Rho function at the first intragenic terminator in the lacZ gene (tiZ1) which can be overcome by NusG: Rho can terminate transcription with slowly moving, but not rapidly moving, RNA polymerase unless NusG is also present. Here we report further studies with two other Rho-dependent terminators that are not kinetically limited (tiZ2 and lambda tR1) which show tha...
متن کاملPrediction of Transcriptional Terminators in Bacillus subtilis and Related Species
In prokaryotes, genes belonging to the same operon are transcribed in a single mRNA molecule. Transcription starts as the RNA polymerase binds to the promoter and continues until it reaches a transcriptional terminator. Some terminators rely on the presence of the Rho protein, whereas others function independently of Rho. Such Rho-independent terminators consist of an inverted repeat followed b...
متن کاملThe Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators.
In Escherichia coli, the essential motor protein Rho promotes transcription termination in a tightly controlled manner that is not fully understood. Here, we show that the general post-transcriptional regulatory protein Hfq associates with Rho to regulate Rho function. The Hfq:Rho complex can be further stabilized by RNA bridging both factors in a configuration that inhibits the ATP hydrolysis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 152 Pt 9 شماره
صفحات -
تاریخ انتشار 2006